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Abstract
Objective. Computed tomography perfusion (CTP) imaging is widely used for assessing acute ischemic
stroke.However, conventionalmethods for quantifyingCTP images, such as singular value
decomposition (SVD), often lead to oscillations in the estimated residue function and under-
estimation of tissue perfusion. In addition, the use of global arterial input function (AIF) potentially
leads to erroneous parameter estimates.We aim to develop amethod for accurately estimating
physiological parameters fromCTP images.Approach.We introduced a Transformer-based network
to learn voxel-wise temporal features of CTP images.With global AIF and concentration time curve
(CTC) of brain tissue as inputs, the network estimated local AIF andflow-scaled residue function. The
derived parameters, including cerebral bloodflow (CBF) and bolus arrival delay (BAD), were validated
on both simulated and patient data (ISLES18 dataset), andwere comparedwithmultiple SVD-based
methods, including standard SVD (sSVD), block-circulant SVD (cSVD) and oscillation-index SVD
(oSVD).Main results.Ondata simulatingmultiple scenarios, local AIF estimated by the proposed
method correlatedwith true AIFwith a coefficient of 0.97± 0.04 (P< 0.001), estimatedCBFwith a
mean error of 4.95ml/100 gmin−1, and estimated BADwith amean error of 0.51 s; the latter two
errors were significantly lower than those of the SVD-basedmethods (P< 0.001). TheCBF estimated
by the SVD-basedmethods were underestimated by 10%∼ 15%. For patient data, theCBF estimates
of the proposedmethodwere significantly higher than those of the sSVDmethod in both normally
perfused and ischemic tissues, by 13.83ml/100 gmin−1 or 39.33% and 8.55ml/100 gmin−1 or
57.73% (P< 0.001), respectively, whichwas in agreement with the simulation results. Significance.
The proposedmethod is capable of estimating local AIF and perfusion parameters fromCTP images
with high accuracy, potentially improving CTP’s performance and efficiency in diagnosing and
treating ischemic stroke.

1. Introduction

Stroke is a leading cause of death worldwide. As the
most common type of stroke (GBD 2019 Stroke
Collaborators 2021, Pu et al 2023), ischemic stroke is
characterized by arterial occlusion, which results in
insufficient blood supply to certain downstream
tissues of the brain. One important goal in the
treatment of ischemic stroke is the timely recanaliza-
tion of the occluded vessel, thereby preventing
the salvageable ischemic penumbra from further

developing into irreversible infarct core. Therefore,
rapid and accurate assessment of the viability of
potentially affected tissue is needed for optimal
management of stroke patients.

Computed tomography perfusion (CTP) imaging
has beenwidely used in clinical practice to reveal tissue
hypoperfusion and thus assess the salvage potential of
tissues in patients with ischemic stroke (Cereda et al
2016, de la Rosa et al 2021, Hakim et al 2021, Gava et al
2023, Luo et al 2024). In CTP image analysis, physiolo-
gical parameters such as cerebral blood flow (CBF),
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cerebral blood volume (CBV), mean transit time
(MTT), and bolus arrival delay (BAD) are derived and
used to determine whether the tissue is normal, hypo-
perfused or infarcted. The parameter derivation is
based on the indicator dilution theory that the tracer
concentration time curve (CTC) in tissue is the con-
volution of the arterial input function (AIF) and the
flow-scaled residue function (Fieselmann et al 2011,
Østergaard et al 1996). The residue function fully char-
acterizes the microvasculature and vascular dynamics
of tissue.

Methods for determining residue function from
CTC generally fall into two categories: model-based
and model-free (Khalifa et al 2014, Sourbron and
Buckley 2013). In model-based methods, a mathema-
tical model with a specific shape is predefined for the
residue function, and representative examples include
the Tofts model, the two-compartment exchange
(2CXM) model and the adiabatic approximation of
tissue homogeneity (AATH)model. Predefined shapes
for residue function can simplify the computation
process, but underlying assumptions of themodelmay
not be applicable to all tissue types or pathological
conditions. A popular model-free method is singular
value decomposition (SVD) (Østergaard et al 1996,
Wu et al 2003) for deconvolution. However, deconvo-
lution is an inverse problem that is extremely sensitive
to noise, whichmeans that the residue function gener-
ated by the SVD often displays severe oscillations that
are not physiologically meaningful. The CBF deter-
mined from such residue function may be under-
estimated, as observed in several studies (Fieselmann
et al 2011,Mouridsen et al 2006, Shinohara et al 2010).

Recently, deep learning methods such as bi-CNN
(Fang et al 2021, Ulas et al 2019), U-Net (Gava et al
2023), LSTM (Zou et al 2020), GRU (Ottens et al
2022), attention block (Zeng and Zhou 2021), PINN
(van Herten et al 2022) and GAN (Huang et al 2023,
Oh et al 2024) have shown great promise in quantify-
ing parameters from dynamic images. However,
CNN-based networks, while effective in capturing
local features through convolutional kernels, struggle
with capturing long-term dependencies and require
fixed-length inputs, often necessitating padding or
truncation that may lead to information loss or noise
introduction. RNN-based networks are susceptible to
gradient vanishing or explosion during training, and
their sequential processing nature prohibits parallel
computation. PINNs face challenges in simulta-
neously optimizing data fitting and physical constraint
terms, resulting in high computational complexity
and convergence difficulties. In GAN-based para-
meter estimation tasks, the adversarial training pro-
cess may prioritize sample diversity over estimation
accuracy, potentially leading to biased parameter esti-
mates and unreliable results. Some of these methods
use parameter maps obtained by conventional model-
based methods as the ground truth for network train-
ing, and are thus essentially similar to model-based

‘parameter mapping’. Other methods involve unsu-
pervised learning that minimizes the difference
between the reconstructed CTC and the measured
one, but still tend to restrict the residue function to a
specific family of shapes, and thus may limit the
applicability of thesemethods.

Another challenge in quantifying CTP images is
the accurate sampling of AIF (Calamante 2013). All of
the methods described above use AIF sampled in a
major artery (denoted as the global AIF). Using such
AIF for analyzing signals of all tissues in the field of
view, one ignores the potentially large difference in
delay or dispersion of the tracer as it transits from the
sampling point to the tissue of interest. In the case of
acute ischemic stroke, vascular occlusion significantly
delays and disperses tracer transit, and thus vasody-
namics can be quite heterogeneous within the region
of interest (Lorenz et al 2006).

In this study, we proposed a Transformer-based
deep learning approach for estimating physiological
parameters from CTP images. We chose the Transfor-
mer architecture due to its proven effectiveness in cap-
turing long-range dependencies in sequences
(Shamshad et al 2023, Vaswani et al 2017) , which
enables native handling of variable-length inputs
without the need for padding or truncation. Unlike
traditional methods, our approach eliminated the
requirement for pre-specifying a pharmacokinetic
model to constrain the residue function to a specific
family of shapes, thereby offering greater flexibility
and generality. Inspired by recent work (Bae et al 2023)
that utilized Vision Transformer for local AIF estima-
tion in dynamic contrast enhanced MR images, we
included the global AIF as a second input, as it con-
tains information about arterial inputs, and applied
non-negative, monotonically non-increasing and
smoothness constraints on the shape of the residue
function. For validation, we compared the proposed
method with the SVD-based methods on simulated
data and a public patient dataset of stroke, ISLES18.
We hypothesized that the proposed method could
estimate local AIF and quantify tissue perfusion para-
meters with higher accuracy than the SVD-based
methods.

2.Materials andmethods

In this section, we first briefly introduce the tracer
kinetic theory and how to quantify physiological
parameters from CTP images. The proposed method
is then presented, including the network architecture
and its training specifications. Lastly, we describe the
data used for validating the method, including the
simulated data and the public patient dataset of stroke,
ISLES18, as well as the SVD-based methods used for
comparison.
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2.1. Tracer kinetic theory
CTP imaging is dynamic CT scans performed over a
period of time following intravenous injection of an
iodinated tracer. It can be assumed that the tracer
concentration per tissue voxel is proportional to the
measured x-ray attenuation value (Fieselmann et al
2011). According to the indicator dilution theory
(Østergaard et al 1996), if the blood–brain barrier is
intact, the measured CTC, C(t), is the convolution of
the supplying AIF,Ca(t), and the unknown flow-scaled
residue functionR(t):

( ) ( ) ( ) · ( ) ( )

( )

C t C t R t C r t dCBF

1

t

a
0

aò t t tk = Ä = -

where the residue function r(t) characterizes the local
vascular structure of the tissue of interest. The
constant κ is usually set to 0.73, reflecting the average
hematocrit and density of tissue (Fieselmann et al
2011,Mouridsen et al 2006).

For solving equation (1), the convolution integral
is calculated using the trapezoidal approximation
(Boutelier et al 2012, Koh et al 2011). Several physiolo-
gically meaningful parameters can be derived from the
residue function R(t). For example, CBF is computed
as the maximum value of R(t), CBV parameter as the
ratio of integral of CTC over that of AIF over time, and
MTT as ratio of CBV over CBF according to the cen-
tral volume theorem. The parameter BAD is defined as
the time required for arterial blood to reach the voxel

of interest. These parameters are helpful in identifying
abnormalities in brain tissue. It is found that the
ischemic brain tissue in stroke patients usually shows
significant decrease in CBF and CBV, and significant
increase in MTT and BAD (de la Rosa et al 2021,
Fieselmann et al 2011, Luo et al 2024).

In practice, the global AIF is usually sampled in a
large artery due to limitations such as spatial resolu-
tion. However, potential delay and dispersion effects
may occur during the transit from the AIF measure-
ment point to the tissue of interest, introducing large
errors in parameter quantification. The use of local
AIF, which is theoretically closer to arterial inlet of the
tissue voxel of interest, can mitigate this issue
(Calamante 2013).

2.2. A transformer-based network for parameter
estimation
In the following, we present a Transformer-based
network for estimating flow-scaled residue function
and local AIF from tissue’s CTC and global AIF. In
addition, the BAD is estimated as a separate output of
the network, but not as part of estimated residue
function or local AIF, in order to focus the network
training on learning the complex shape features of the
functions. As shown in figure 1, the network consists
of a shared Transformer encoder and three task-
specific decoders. The Transformer block extracts
temporal features of the inputs by capturing the
dependencies between values at different time points.

Figure 1.The proposed network consists of a shared encoder and three task-specific decoders. OneCTCmeasured from the voxel of
interest is input to the encoder, and the global AIF, either assumed or sampled from a large artery, is input to the three decoders. The
embedding layer converts the input data to the Transformer dimension. The network outputs include local AIF, flow-scaled residue
function andBADvalue. Lower right are examples of global AIF andCTCmeasurements from aCTP image and the corresponding
ROIs fromwhich theywere extracted.
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Similar to the original design (Vaswani et al 2017), our
Transformer block consists of 3 identical layers, with
the model dimension of 64 and the number of
attention heads of 16. Each input data consists of a
CTC and a global AIF, each being a one-dimensional
vector. The CTC is fed to the encoder, and the global
AIF to the decoder. Inspired by the previous approach
for time series processing (Zhou et al 2021), the
embedding layers consists of three components: data
projection via one-dimensional convolutional filters,
fixed position embedding and learnable temporal
embedding. After each decoder, two linear layers are
used to reshape the output from the Transformer
block to the dimension of the final output. For
physiological validity, a Softplus activation function is
applied to all the outputs to ensure non-negativity,
and a descending-sorting operation is applied to the
residue function to maintain its monotonically non-
increasing characteristics.

For network training, we used a loss function com-
prising four components: mean squared error (MSE)
between the true BAD parameter δ and its estimate d̂ ,
MSE between the reconstructed CTC ˆ ( )C t and the
input CTC C(t), MSE between the estimated local AIF
ˆ ( )C ta_local and its truth function Ca_local(t), and a reg-
ularization term that ensures smoothness of the flow-
scaled residue function R(t) (Boutelier et al 2012, Luo
et al 2024). The latter two components are unsu-
pervised. The loss function L(w) is a weighted sum of
the four components:

( )

( ) ‖ ˆ‖ ‖ ( ) ˆ ( )‖

‖ ( ) ˆ ( )‖ ( ) 2

L w C t C t

C t C t d R t

dt

2
2

1 a_local a_local 2
2

2 2
2

3

22

2

d d l

l l

= - + -

+ - +

where λ1, λ2, and λ3 denote the hyper-parameters that
balance each loss component, with their relative
contributions to the loss equal to approximately
1:1:7:1, respectively, to prioritize the CTC reconstruc-
tion error while maintaining a balanced contribution
from the other terms.

For model training on the simulated dataset, we
used the Adam optimizer to minimize the loss func-
tion with a batch size of 1024 over 100 epochs. The
dataset was divided into training and validation sets at
a ratio of 0.8/0.2. With a warm-up learning rate tun-
ing strategy, we gradually increased the learning rate to
3e-5 in the first 10% of epochs, and then decreased it
in cosine annealing in the following epochs. During
the fine-tuning phase of the patient dataset, the net-
work architecture and hyper-parameter settings
remained unchanged. All weights were frozen except
for the residue function estimation decoder, and the
third and fourth loss components in equation (2)were
considered. The entire network was implemented in
Python 3.8.12 using Pytorch 1.12.0 and executed on a
singleNVIDIAA40GPU (45 Gb).

2.3. Simulated and patient data for network training
and testing
We used simulated data and a real patient dataset to
validate the feasibility of the proposed method. In the
following we first describe the process of generating
the simulated data, as shown infigure 2.

First, since factors such as different injection
schemes and the patient’s cardiac activity can lead to
different AIF shapes, we used two functions to simu-
late possible flow dynamics. Specifically, the gamma-
variate function (Mouridsen et al 2006, Wu et al 2003)
simulates the dynamics of the tracer’s ‘first pass’
through the circulatory system, while the population-
based AIF proposed by Parker et al (Parker et al 2006)
additionally models the ‘recirculation’ phenomenon
thatmay occur after the ‘first pass’.

( ) ( )C t at e 3b
a_gamma

t
c= -

( )

( )

( )
( )

/C t
A

e
de

e1

4
n

n

n

t T
kt
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1

2

2

2
1

n n
2 2å s

= +
+p

s
t

=

- -
-

- -

The parameter values of equations (3) and (4) were
initially determined based on standard injection
schemes described in the literature (Parker et al 2006,
Wu et al 2003) to generate global AIFs with typical
shapes and sizes. To more realistically simulate
physiological variability, the AIF curves were scaled
along both the time and value axes using uniformly
distributed factors ranging from70% to 130%.

The flow-scaled residue function R(t) was derived
from the integral of the transit time distribution h(τ)
(Mouridsen et al 2006), shown in equation (5), which
is modeled by a family of gamma distributions and
consists of two parameters: the shape parameterα and
the scale parameterβ.

( ) ( ( ) )

·(
( )

) ( )/

R t h d

e d

CBF 1

CBF 1
1

5

t

t

0

0
1

ò

ò

t t

b a
t t

= -

= -
Ga

a t b- -

The residue function is approximately exponentially
shaped for α= 1 and box-car shaped for α = 100. By
definition, the MTT is the first moment of h(τ), which
is equal toαβ.

Delay and dispersion effects occur as the tracer
transits from a large artery, where global AIF is typi-
cally sampled, to a local capillary near the tissue of
interest. The delay effect was modeled by shifting the
global AIF by a certain time interval δ, and the disper-
sion effect was modeled by convolving the global
AIF with the vascular transport function (VTF).
Here, we used the exponential dispersion kernel
(Calamante et al 2000, Pizzolato et al 2017, Sourbron
andBuckley 2013) for VTF.

( ) ( )
/

t
e

T
VTF 6

t T

A

A

=
-

where TA is the mean arterial transit time, i.e. the
average time it takes to travel from the upstream site
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where theAIF ismeasured to the local inlet of the voxel
of interest. As the value of TA increases, the dispersion
effect becomes more pronounced, manifested by a
widening of the peak width and a decrease in the peak
amplitude. Considering the effects of delay and disper-
sion, equation (1) can be expressed as:

( ) ( ( ) ( )) ( ) ( )C t C t t R tVTF 7a d= - Ä Ä

In order to simulate the inherent noise present in
real patient data, zero-mean Gaussian noise was added
to the simulated CTCs, resulting in noisy CTCs with
different signal-to-noise ratios (SNR) (Brahma et al
2024,Welvaert andRosseel 2013).

Following the process in figure 2, we simulated a
training dataset consisting of 500,000 curves. During
the convolution process, the curves were first gener-
ated at a small time interval tominimize the discretiza-
tion error. Subsequently, the curves were resampled to
the required temporal resolution, which was uni-
formly selected from 1 to 2 s, and the total number of
time points is from45 to 120. The parameter values for
the simulation were uniformly sampled from physio-
logically realistic ranges in previous literature
(Mouridsen et al 2006, 2014, Pizzolato et al 2017):
SNRä[1,30] dB, CBFä[0,200] m1/100 g min−1,
MTTä[3.43,24] s,αä[0.5,100],TAä[1,4] s, δä[0,25] s.
As shown in table 1, several simulated test datasets
were constructed to evaluate the performance of the
methods under different noise levels, delay levels, dis-
persion levels, sampling temporal resolutions, AIF
types, and residue function shapes, with 10,000 curves
generated independently for each variable. The CBV
was set to 4% to simulate normal graymatter.

Our method was validated using a public patient
dataset from the Ischemic Stroke Lesion Segmentation
(ISLES) 2018 challenge (Cereda et al 2016, Hakim et al
2021). This dataset contains imaging data of acute
ischemic stroke patients from multiple scanners and
centers. We obtained the data directly through the
ISLES challenge website (http://www.isles-challenge.
org/). The dataset consists of 156 CTP acquisitions
from 103 stroke patients, with the data divided into a

training set (94 CTP volumes from 63 patients) and a
test set (62 CTP volumes from 40 patients). Notably,
the open database only provides binary-form infarct
core segmentation masks (delineated in diffusion
weighted imaging (DWI) images) for the training set.
All images were motion-corrected, co-registered with
DWI, and spatiotemporally resampled (resulting in a
matrix size of 256× 256 voxels with an in-plane reso-
lution of 0.79–1.09 mm, slice thickness between
4.0 mm and 12.0 mm, and a temporal resolution
of 1 s).

For each CTP volume in the patient dataset, in
addition to acquiring a global AIF, it is necessary to
acquire the venous output function (VOF) to compen-
sate for the partial volume effect in AIF (de la Rosa et al
2021), which recalibrates the AIF peak by equalizing
the area under the two curves, as illustrated in figure 3.
Additionally, a whole-brain segmentationmask, a vas-
cular region mask, and a cerebrospinal fluid (CSF)
mask were generated. These pre-processing steps were
facilitated by methods integrated in uOmnispace.
CT (United-Imaging, Shanghai, China), an FDA-
approved software package for CTP analysis. Guided
image filtering (He et al 2013) was used as an addi-
tional step to improve the image quality, with the
radius set to 2, the regularization parameter set to 0.01,
and the time-averaged image of CTP volume selected
as the guidance image. In addition, clinical CTP ima-
ging is influenced by various factors, including differ-
ences in imaging devices, patient-specific pathologies,
variations in imaging parameters, and artifacts (e.g.,
motion or metal artifacts). These factors contribute to
more complex noise distribution and greater CTC
variability in patient data compared to simulated data.
For instance, the basic assumption formodeling simu-
lated data is that the noise follows a Gaussian distribu-
tion and the residue function is characterized by a
family of gamma distributions. This simplification
may differ from the complex distributions in real CTP
images (Li et al 2022, Luo et al 2024). Therefore, to
improve the generality of the proposed network, the
network was supplemented and fine-tuned using a

Figure 2. Simulated data generation process. Startingwith anAIFwith a typical shape and size, the possible flowdynamics are
simulated through the steps of FWHM (full width at halfmaximum) scaling, amplitude scaling, dispersion addition and time shifting.
The residue function ismodeled using a family of gammadistributions, and different parameter settings result in different shapes of
the residue function. The noisy CTC is generated after convolving the generated AIF and residue function aswell as addingGaussian
noise.
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small number of real data samples before applying the
training weights from the simulated data to the patient
dataset. Given that the ISLES challenge only provides
binary-form DWI infarct core segmentation for some
of the data, we used the original training set (a total of
94 cases) for real-world data test, and the data from the
original test set for fine-tuning (a total of 62 cases).

2.4. Comparative techniques
The proposed method was compared with several
commonly used deconvolution methods based on
singular value decomposition (SVD), including the
standard SVD (sSVD), the block-circulant SVD
(cSVD) and the oscillation index SVD (oSVD). The
main idea of the sSVD method is to decompose the
AIF matrix into two orthogonal matrices and one
diagonal matrix, thereby obtaining the solution of
residue function (Fieselmann et al 2011, Ho et al
2016). In order to regularize the solution to reduce
oscillations and obtain physiologically sound results, it
is necessary to use a certain threshold to suppress the
effect of small singular values (Mouridsen et al 2006,
Østergaard et al 1996). The cSVD and oSVD methods
both use a block-circulant AIF matrix and have been
shown to provide flow estimates that are insensitive to
BAD. The sSVD and cSVD both use a global threshold
for regularization, while oSVD iteratively adjusts the
threshold for each spatial voxel until the calculated
oscillations index falls below a predefined one. Speci-
fically, we used a regularization threshold of 20% for
sSVD (Østergaard et al 1996), a threshold of 10% for
cSVD, and set the oscillations index for oSVD to 0.035
(Wu et al 2003).

2.5. Statistical analysis
In the simulated dataset, we first evaluated the accur-
acy of the local AIF estimates by calculating the
Pearson correlation coefficient (r) between the esti-
mated local AIF and the ground truth. In addition, we
assessed key characteristics of AIF, including magni-
tude offirst-pass peak (Mpeak), time to the peak (Tpeak),
and full width at half maximum (FWHM) of the peak,
and calculated the difference of these parameters
between the estimated AIF and the simulated true AIF.

To evaluate the accuracy of parameter estimates (CBF
and BAD) in the simulated datasets, we calculated the
root mean square error (RMSE) of the parameter
estimates by the different methods with respect to the
simulated true parameter values for all simulated
scenarios. These accuracy measures were plotted as a
function of noise, delay, dispersion, temporal resolu-
tion, AIF type and residue function shape. In addition,
we measured the consistency using the ratio between
the estimated and true CBF, which is independent of
the size of the true flow. Since the real-world data lack
a gold standard for tissue perfusion estimation, in
order to quantitatively explore the differences in
estimated CBF between the different methods in the
patient dataset (containing 94 CTP images), we
calculated the CBF values for eachmethod in normally
perfused regions and ischemic regions (determined by
DWI masks) respectively. Then we compared the
deviation proportions of the mean CBF estimates of
each method relative to the sSVD method in different
brain regions. Paired Wilcoxon-test was performed,
and the significance level was set toα= 0.05.

3. Results

3.1. Validationwith simulation
On simulated test datasets, a good correlation between
the estimated local AIF and the ground truth was
achieved (r = 0.97 ± 0.04, P < 0.001). In addition,
the results for the metrics used to evaluate the
AIF characteristics were as follows: Mpeak error of
0.02± 0.09, Tpeak error of 0.12± 1.03 s, FWHM error
of −0.01 ± 0.85 s. The errors of Tpeak and FWHM
were below the minimum 1 s temporal resolution set
for the simulated dataset.

Figures 4, 5 illustrated the comparative perfor-
mance of the four perfusion parameter estimation
methods under different scenarios. The results indi-
cated that the average estimation error of the proposed
method was significantly lower than that of the SVD-
based methods across six simulated test datasets
(P < 0.001). Specifically, the average RMSE of CBF
estimation for the network, sSVD, cSVD, and oSVD
were 4.95 ml/100 g min−1, 7.95 ml/100 g min−1,

Figure 3. Illustration of VOF recalibration. (A)TheAIFwas obtained from themiddle cerebral artery. (B)TheVOFwas extracted
from the sagittal sinus, where the partial volumetric effects are considered negligible. (C)Amplitude correction of AIF usingVOF,
based on the assumption that the area under theAIF andVOF curves are equal.
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7.18 ml/100 g min−1, 7.03 ml/100 g min−1 respec-
tively; and the average RMSE of BAD estimation for
the network, sSVD, cSVD, and oSVD were 0.51 s,
3.07 s, 3.27 s, and 2.82 s respectively. In addition, the
average CBF ratios of each method were 0.95 ± 0.15
for the network, 0.85± 0.13 for sSVD, 0.90± 0.15 for
cSVD, and 0.85± 0.11 for oSVD.

The results showed that the accuracy of parameter
estimation for all methods was affected by different
noise levels, where the estimation error decreased as
the SNR increased, and stabilized for most of the
methods except oSVD when the SNR exceeded 20 dB.
Furthermore, the presence or absence of BAD had a
great impact on the parameter estimation accuracy of
the SVD-based methods, while the network exhibited
a more stable estimation error variation. The
enhanced dispersion effect led to an increase of para-
meter estimation error for all methods, while the net-
work consistently maintained a relatively low error
level. Moreover, the performance of all methods
improved as the temporal resolution increased, with
oSVD being more sensitive to this factor compared to
sSVD and cSVD. In addition, the network was less sus-
ceptible to changes in the AIF assumptions than the
SVD-based methods, and the parameter estimation
error for the gamma AIF was generally lower than that
for the parker AIF. Besides, the SVD-based methods
displayed notably higher variation than the network in
data with two different residue function shapes: expo-
nential (α = 1) and box-car (α = 100), which indi-
cated that the network exhibited greater robustness
when confronted with data under different residue
function shape assumptions.

3.2. Evaluationwith patient data
To compare the residue function estimates of the
different methods, figures 6, 7 illustrated an example
of the estimation of the flow-scaled residue function
and the reconstructed CTC within the brain ROIs
using different methods. We first placed four 5 × 5
regions of interest (ROIs) in normal and ischemic

regions (as determined by the DWI masks from
ISLES18 dataset) of white matter and gray matter,
respectively, then calculated the average of the esti-
mated curves within these ROIs for each method. As
depicted in figure 6, the reconstructed CTCs from our
proposed network closely matched the observed
CTCs. The local AIF estimated in the ischemic region
exhibited a wider peak with a lower peak amplitude
compared with the normally perfused region. In
addition, the estimated residue function decayedmore
slowly in ischemic regions than in normal regions.
And the results indicated that the CBF was higher in
gray matter than in white matter, and higher in
normally perfused regions than in ischemic regions.
Figure 7 showed that there were significant oscillations
in the residue function estimated by the SVD-based
methods, alternating between positive and negative
values in the late phase, in contrast to the smooth and
monotonically non-increasing residue function pre-
dicted by the network. And these oscillations were
more pronounced in the ischemic region than in
the normally perfused region, especially when using
the cSVD and oSVD methods. In addition, the
network-estimated CBF values were higher than those
estimated by the SVD-basedmethods.

Figure 8 showed examples of physiological para-
meter maps obtained by sSVD, cSVD, oSVD, and the
proposed network, demonstrating the application on
two different patients with ischemic stroke due to
occlusion of the left middle cerebral artery. The gener-
ated perfusion parameter maps were helpful in differ-
entiating between ischemic and normal tissues, with
ischemic regions showing reduced CBF, prolonged
MTT, and increased BAD compared to normally per-
fused regions. In addition, the network estimated
higher CBF values, shorter MTT values, and shorter
BADvalues compared to the SVD-based estimates.

Table 2 showed that the CBF estimates by the net-
work was significantly higher than those by the
SVD-based methods (P < 0.001). Specifically, in the
normally perfused region, the CBF estimates of cSVD,

Table 1.Generation of simulated test datasets. Themain variables of each dataset are highlighted in bold, including different noise levels,
delay levels, dispersion levels, sampling temporal resolutions, AIF types, and residue function shapes.Ca(t): global AIF,Ca_parker(t):
population-based AIF,Ca_gamma(t): gamma-variate AIF, CBV: cerebral blood volume,MTT:mean transit time,α: shape parameter
controlling the residue function, δ: bolus arrival delay (BAD),Δt: temporal resolution, T: total duration,TA:mean arterial transit time, SNR:
signal-to-noise ratio.

Dataset Setting

#1 Ca(t)ä[Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= 1, δä[0,25] s,Δt= 1 s, T= 80 s,TA= 0 s,

SNR= [5,7,10,15,20,25,30] dB.
#2 Ca(t)ä[Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= 1, δ= [0,1,2,3,4,5,6,7,8,9,10] s,Δt= 1 s, T= 80 s,TA= 0 s,

SNR= 20 dB.

#3 Ca(t)ä[Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= 1, δä[0,25] s,Δt= 1 s, T= 80 s,TA= [0,1,2,3,4,5] s,
SNR= 20 dB.

#4 Ca(t)ä[Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= 1, δä[0,25] s,Δt= [1,1.1,1.3,1.6,2] s, T= 80 s,TA= 0 s,

SNR= 20 dB.

#5 Ca(t)= [Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= 1, δä[0,25] s,Δt= 1 s, T= 80 s,TA= 0 s, SNR= 20 dB.

#6 Ca(t)ä[Ca_parker(t),Ca_gamma(t)], CBV= 4%,MTTä[3.43,24] s,α= [1,100], δä[0,25] s,Δt= 1 s, T= 80 s,TA= 0 s,

SNR= 20 dB.
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oSVD, and the proposed network were 1.32 ml/
100 g/min lower (−3.75%), 0.41 ml/100 g/min lower
(−1.17%), and 13.83 ml/100 g/min higher (39.33%)
than that of sSVD, respectively. Additionally, in the
ischemic region, the CBF estimates of cSVD, oSVD,
and the proposed network were 1.16 ml/100 g/min
higher (7.83%), 0.3 ml/100 g/min lower (−2.03%),
and 8.55 ml/100 g/min higher (57.73%) than that of
sSVD, respectively.

4.Discussion

In this study, we introduce a deep learning approach
for automatic and accurate estimation of physiological
parameters in CTP images. Using global AIF and
voxel-wise CTC as inputs, the method was able to
provide estimates of local AIF, flow-scaled residue
function, and BAD value. The correlation coefficient
between the local AIF estimated by themethod and the
true AIFwas 0.97± 0.04 (P< 0.001) in simulated data.
It estimated CBF with a mean error of
4.95 ml/100 g min−1 and BAD with a mean error of
0.51 s, both of which were significantly lower than the
SVD-based methods (P < 0.001). In addition, the
proposed method also yielded more accurate para-
meter estimates in the presence of poor data quality
(e.g., noise, delay, dispersion, temporal resolution,
bolus shape). Furthermore, when applied to real-
world patient data, the proposed network had a
distinct advantage over SVD-based methods, provid-
ing smooth non-increasing residue function estimates
that were more physiologically interpretable. The
network yielded higher CBF estimates than the SVD-

based methods when evaluating normally perfused
and ischemic tissues in patient data.

Regarding the network architecture, we adopted a
modified Transformer framework tailored to our spe-
cific task requirements. While the vanilla Transformer
architecture (Vaswani et al 2017) typically employs 6
identical layers for tasks such as machine translation,
our input sequences consisted of at most 120 time
points, making our task relatively lightweight in com-
parison. Through preliminary experiments compar-
ing 6-layer and 3-layer configurations, we observed
that the performance difference was not significant.
The 3-layer configuration not only reduced the num-
ber of parameters, making the model less computa-
tionally expensive and easier to train, but also
maintained sufficient modeling capacity for our task.
The training process was completed in approximately
one week using our hardware configuration. For infer-
ence, the model generated perfusion parameter maps
(including CBF, BAD, MTT, CBV) in less than 1 min
per slice for the patient dataset. We note that both
training and inference times could be further reduced
through the use of additional GPU resources and
advanced parallel processing techniques.

When transferring the weights trained on the
simulated dataset to the real patient dataset, we used a
small number of real data samples to supplement and
fine-tune the network. The main reason for this is the
complexity of the noise distribution in real CTP data-
sets, which varies between frames and between differ-
ent brain regions in the same frame (Li et al 2022). In
addition, the actual residue function may not be fully
represented by the family of gamma distributions.
Therefore, it is challenging to use simulation to

Figure 4.Root-mean-square errors betweenCBF estimates fromdifferentmethods and the ground truth physiological parameters.
The errors were plotted as a function of (A)noise, (B) delay, (C) dispersion, (D) temporal resolution, (E)AIF type and (F) residue
function shape.
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encompass the various complexities in real data
(Luo et al 2024). Furthermore, since the flow-scaled
residue function is unknown in reality, the estimation
of the residue function is not directly supervised by the
ground truth during training on simulated data, which
ensures the feasibility of fine-tuning on the patient
dataset.

The shape of the residue function reflects the
retention of the tracer in the microvasculature. The
results of the patient data indicated that the residue
function decayed more slowly in ischemic regions
compared with normally perfused regions. Residue
functions obtained with the SVD-based methods
exhibited significant oscillations in the late phase,
alternating between positive and negative values. This
phenomenon was more pronounced in ischemic
regions. Such spurious oscillations may not be con-
sistent with the true physiological behavior of the

residue function and may lead to instability of the
derived perfusion parameters. In contrast, our pro-
posed method ensures the smoothness and mono-
tonic non-increasing nature of the residue function,
which is more consistent with the physiological
interpretation and has the potential for more robust
parameter estimation.

In practice, in order to achieve a reasonable SNR,
AIF is not measured directly in the blood-supplying
capillaries near the tissue of interest, but in larger
arteries. This approach leads to a traveling time of the
tracer bolus and a widening of the bolus shape from
where the AIF is measured to the tissue of interest. It
has been found that SVD-based methods tend to
underestimate CBF and may exaggerate hypoperfu-
sion if dispersion correction is not considered
(Fieselmann et al 2011). In fact, it is infeasible to locally
measure the concentration at the arterial inlet of tissue

Figure 5.Root-mean-square errors betweenBAD estimates fromdifferentmethods and the ground truth physiological parameters.
The errors were plotted as a function of (A)noise, (B) delay, (C) dispersion, (D) temporal resolution, (E)AIF type and (F) residue
function shape.

Figure 6. (A) Four regions of interest (ROIs) consisted of 5× 5 voxels, eachwith an in-plane size of 0.86 mm× 0.86 mm: normal gray
matter (ROI 1, green), normal whitematter (ROI 2, blue), ischemic whitematter (ROI 3, orange), and ischemic graymatter (ROI 4,
red), with theDWImask providing a delineation of normal and ischemic regions. (B)network-estimated local AIFs (solid line) and
sampled global AIF (dashed line). (C)network-estimated flow-scaled residue functions. (D)network-reconstructed CTCs (solid line)
and observed CTCs (dashed line)within different ROIs.
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due to limited spatial resolution. Our network used
local AIF to correct for the delay and dispersion effects
in acute ischemic stroke. As a result, it could provide
hemodynamic information at the capillary level,
hypothesizing a more accurate estimation of CBF.
Conventionally, the CBF measurements obtained by
15O-PET (positron emission tomography) serve as the
gold standard for in vivo evaluations. Recent studies
have shown that with the delay-compensated singular
value decomposition method (SVD+) for CTP analy-
sis, the mean value of PET-CBF was 41.13% higher in
affected side and 44.03% higher in unaffected side
compared to CTP-CBF (Shinohara et al 2010). Our
results showed that the CBF estimates of the proposed
network was 13.83 ml/100 g/min higher (39.33%)
than that of sSVD in the normally perfused region, and
8.55 ml/100 g/min higher (57.73%) than that of sSVD
in the ischemic region.

Our results showed that the BAD values based on
the SVD-based methods were larger than those of the
proposed network. The main reason is that the theor-
etical definition of BAD is the time it takes for arterial
blood to reach the relevant voxel. In the SVDmethods,
the BAD parameter is usually estimated by calculating
the time-to-maximum (Tmax) of the residue func-
tion. In practice, it has been found that Tmax reflects a
combination of BAD, temporal dispersion, and to a
lesser degree, mean transit time (Calamante et al
2010). This is why the Tmax estimated by the SVD
method may be larger than the theoretical BAD. In
addition, the sampling of TR data introduces discrete
errors in the BAD estimation. Since the measured
Tmax can only be a multiple of TR, a ‘staircase’ effect
occurs. In contrast, the BAD estimated by our network
is a continuous value, so the estimation is more
realistic.

Figure 7.Comparison of the average estimates within different ROIs for the fourmethods: the proposed network (blue), sSVD
(orange), cSVD (green), oSVD (red). (A) estimated flow-scaled residue functions. (B) reconstructed CTCs (solid line) and observed
CTCs (dashed line).

Figure 8.Examples of physiological parametermaps estimated by sSVD, cSVD, oSVD, and the proposed network. The left and right
halves showed slices from two different ischemic stroke patients, respectively. Physiological parameters includedCBF,MTT andBAD.
Each parametermap estimated by allmethodswas visualized using the samewindow settings for each patient.
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The proposed method provides a new solution for
perfusion image analysis that eliminates the need for
presetting specific pharmacokinetic models. Only
smoothness and monotonic non-increasing con-
straints are imposed on the residue function, thus
enhancing its generality and interpretability. It is
anticipated that this approach will be extended to
perfusion analysis in other disease areas such as
cancer, along with other imaging modalities including
DCE-MRI, DSC-MRI and dynamic PET.

There are some limitations in our work. First, the
voxel-level estimation is inherently susceptible to partial
volume effects, and future studies could explore para-
meter estimation at the patch level, an approach that uti-
lizes spatial information and helps to generate parameter
maps with lower noise levels. Second, although delay and
dispersion correction were addressed separately in this
study, their interconnectedness in real-world scenarios
requires a more sophisticated modeling framework.
Additionally, the commonlyused threshold fordetermin-
ing the ischemic penumbra and infarct core regions may
not be optimal for the present method. Further refine-
ment and evaluation are necessary for accurate delinea-
tion. Finally, the distribution of training data in deep
learning can have a significant impact on performance,
and adding more prior knowledge may further improve
the robustness andaccuracyof theproposedmethod.

5. Conclusions

The proposed method is a promising technique that
provides a solution for parameter estimation from
CTP images. The method is based on the general
indicator dilution theory and directly estimates the
flow-scaled residue function in a constrained form. As
a result, it does not require predefined specific
pharmacokinetic models and is more generalizable
across different tissue types or pathological conditions.
In addition, the method takes into account potential
delay and dispersion effects that may occur in cases of
ischemic stroke and is therefore more physiological
interpretable and accurate in accessing tissue perfu-
sion. Validated with both simulated data and patient
data, the method could serve as a valuable tool for the
clinical diagnosis and management of acute ischemic
stroke.
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